Journal of Fluorine Chemistry, 36 (1987) 225-236

Received: November 7, 1986; accepted: April 9, 1987

AN ENZYME-ASSISTED POLYMERIZATION. EFFECT OF THE REACTION MEDIUM FOR THE CONTROLLED POLYMERIZATION OF FLUOROAMINO ACIDS

Tomoya KITAZUME, Takanobu IKEYA and Takehiko SATO

Department of Bioengineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Japan)

SUMMARY

Chiral fluoroamino acids were polymerized with cellulase and/or modified cellulase. A number of chiral fluorinated polyamides of narrow molecular weight distribution were prepared. The degree of polymerization is controlled by the matching of enzyme-form and reaction medium.

INTRODUCTION

Enzymes for the hydrolysis of esters and/or amides have been studied in detail [1-5]. However, their catalytic ability for the synthesis of halogenated compounds remains unexplored from a practical point of view.

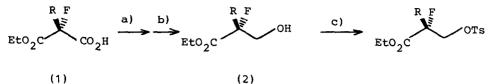
On consideration of the catalytic activity and/or capability of enzymes, it is expected that materials having two functional groups in the molecule, will be polymerized by enzymes [6] to give products having a narrow molecular weight distribution.

```
0022-1139/87/$3.50
```

© Elsevier Sequoia/Printed in The Netherlands

This work describes the effect of the reaction medium [7-9] on an enzyme-assisted process for the controlled polymerization of optically pure fluoroamino acids [10-15].

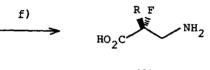
RESULTS AND DISCUSSION

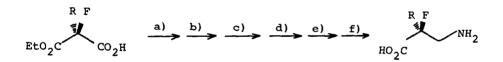

Route to optically pure (R)- or (S)- α -fluoro- β -alanine and its derivatives

The previously reported optical resolution by asymmetric hydrolysis is a useful and important design feature for achieving the desired monofluorinated chiral materials [11-13].

A brief outline of the synthetic strategies employed in preparing optically pure (R)- or (S)- α -fluoro- β -alanine and its derivatives is shown in Scheme I.

The synthetic intermediates are the optically pure hydroxyesters (2) which are prepared by the reduction of the corresponding optically pure 2-fluoro-2-substituted malonic acid monoethyl ester (1) with N,N-dimethylchloromethyleniminium chloride and sodium borohydride. Protection with tosyl chloride followed by treatment of the tosylesters with sodium azide gave the corresponding azide precursors which were converted to ethyl esters of α -fluoro- β -alanine [20-23] and its derivatives with sodium borohydride. The next step was an enzymatic hydrolysis to obtain the corresponding acids (3) that are often unstable under strongly basic conditions. This synthetic route to optically pure fluoroamino acids is a convenient stereocontrolled transformation. Reactions of α -alkyl derivatives which led to the desired α -fluoro- α -substituted- β -alanines were done in almost the same way as for $(R)-\alpha$ -fluoro- β -alanines. The properties and nmr spectra of the amino acids synthesised are reported in Tables 1 and 2.


227


(2)

(3)

a) Me₂NCHO/(COCl)₂/CH₂Cl₂/0°C b) NaBH₄/MeCN-THF/-20°C c) TsCl/pyridine d) NaN₃/i-PrOH/reflux e) NaBH₄/EtOH

f) lipase-MY.

Scheme I

Product ^a	Over all Yield (%)	Molecular formula	мр (°С)	[α] _D /ме0H	0. P. ^D %e.e.	•	Elemental analysis (%) H N cd) found(calcd) found	Elemental analysis (%)CHNfound(calcd)found(calcd)
HO2C ^{H F} NH2	34	C ₃ H ₆ NO ₂ F (107.1)	260-261 (261) ^C	+11.8(c 1.08)	66			
HO2C NH2	41	С ₄ Н ₈ NO ₂ F (121.1)	275-277	-18.7(c 1.25)	66	39.56(39.67) 6.84(6.66) 11.74(11.57)	6.84(6.66)	11.74(11.57)
HO2C HH2	43	с ₅ Н ₈ NO ₂ F (121.1)	274-277	+18.4(c 1.87)	26	39.74(39.67) 6.45(6.66) 11.34(11.57)	6.45(6.66)	11.34(11.57)
HO2C NH2	36	C ₅ H ₁₀ NO ₂ F (135.1)	292-295	-12.7(c 1.29)	96	44.35(44.44) 7.34(7.46) 10.59(10.37)	7.34(7.46)	10.59(10.37)

Physical properties of $\alpha\text{-}fluoro-\alpha\text{-}substituted-B-alanines}\,(3)$

TABLE 1

^C Mukherjee,K.L.,Heidelberger,C. J. Biol. Chem., 235.(1960)433 ^d The absolute configuration is not determined.

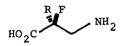
Product	¹ H-N.M.R. (CDC1 ₃) ô[ppm]	1 ⁹ F-N.M.R. (CDC1 ₃ /CF ₃ C0 ₂ H) 6[ppm]
HO2C HC	$3.48 (d.d.d,1H,J_{H_{A}}-H_{B}^{-1} = 2.1, J_{H_{A}}-H_{Vic}^{-1} = 3.0,J_{H_{A}}-F^{-1} = 21 Hz); 3.61 (d.d.d, +78.4(d.d.d) \\1H,J_{H_{B}}-H_{Vic}^{-1} = 8.2, J_{H_{B}}-F^{-1} = 15 Hz); 5.27 (d.d.d,1H,J_{H}-F^{-1} = 46 Hz); \\7.4 (br,NH_{2}); 10.6 (br,CO_{2}H)$	+78.4(d.d.d)
HO ₂ C Me F	1.19(d , 3H, J_{CH_3-F} = 6.3 Hz); 3.50(d . d , 1H, $J_{H_3-H_B}$ = 2.6, J_{H_3-F} = 23 Hz); +84.5(q . d . d) 3.63(d . d , 1H, J_{H_B-F} = 15 Hz); 7.2(br , NH ₂); 10.7(br , CO ₂ H)	+84.5(q.d.d)
H02C	1.20 ($d, 3H, J_{CH_3}-F^{=} 6.4 Hz$); 3.50 ($d, d, 1H, J_{H_A}-H_B^{=} 2.6, J_{H_A}-F^{=} 23 Hz$); +84.4 (q, d, d) 3.64 ($d, d, 1H, J_{H_B}-F^{=} 15.2 Hz$); 7.3 (br, NH_2); 10.7 (br, CO_2H)	+84.4(q.å.å)
HO2C HU2H2	$1.23(t, 3H, J_{CH_3}-CH_2^{=}7.4 Hz); 3.30(d.q, 2H, J_{CH_2}-F^{=}18 Hz); 3.49(d.d, 1H, +87.2(t.d.d))$ $J_{H_3}-H_B^{=}2.4, J_{H_3}-F^{=}24 Hz); 3.64(d.d, 1H, J_{H_B}-F^{=}16.2 Hz);$ $7.4(br, NH_2); 11.2(br, CO_2H)$	+87.2(t.d.d)

 1H and ^{19}F NMR spectra of $^{\alpha-fluoro-\alpha-substituted-\beta-alanines}$ (3)

TABLE 2

229

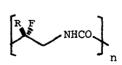
Enzyme-assisted polymerization


This process of polymerization gives polyamides of narrow molecular weight distribution. In particular, the degree of polymerization can be controlled by the matching of enzyme-form and reaction medium. Tables 3 and 4 summarize the results.

Enzymatic immobilization and modification have been recognized as important techniques for modifying the catalytic activities and/or capabilities of enzymes [16-18]. Furthermore, an enzyme modified by reaction with a fluorinecontaining molecule is much more soluble in organic solvents than water [19]. Since it seems that the main-driving force of enzyme-assisted polymerization is interactions between the polyamide and the binding pocket of the enzyme, one might expect that the enzyme-polyamide binding in organic solvents becomes tighter to produce a long chain polymer because the polyamide will be much more soluble in the organic medium than water.

The results presented in Tables 3 and 4 offer possibilities for the biosynthetic polymerization of amino acids possessing fluorine that may offer control of molecular weight size and distribution.

enzyme or


modified enzyme

ਜ ਸ

NH₂

NHCO

Scheme II

TABLE 3

Polyamides by enzyme-assisted polymerization in water

Monomer (3)	Yield	[α] _D /benzene	polymer	dispersity
	q(%)		M _m M _w	D=M _w /M _n
NH2 NH2	(99) ^a 74	+6.7 (c 0.58)	8600 9600	00 1.12
	(99) 61	-8.4 (c 0.97)	6400 8100	00 1.27
HN NH2	(97) 71	+7.6 (c 1.04)	7500 10	10200 1.36
HO2C HU2 (1	(96) 69	-5.1 (c 0.89)	5800 72	7200 1.24
a Optical purity	ity of monomer			

using a Shodex GPC KF-803 column equipped a reflactive index detector Shodex RI. The flow at 50°C. The analysis was done with Shimadzu LC-5A high performance liquid chromatography The samples were subjected to gel permeation chromatography (GPC) in tetrahydrofuran rate was 1.5 ml/min. ൧

4	
ы	
Ĥ.	
щ,	
A.	

Polyamides by modified enzyme^a - assisted polymerization in organic solvent

Monomer (3)	solvent	***	lα) _D /benzene	Polymer		dispersitv
		(8)		Mn	Mw	D=M _w /M _n
H F NH2	benzene	43	+8.2 (c 1.04)	13200	14400	60
$H_0^2 \sim \sqrt{2}$	hexane	32	+7.8 (c 0.95)	11400	13500	1.18
Me F						
ZHN Z	benzene	51	-9.2 (c 1.23)	9100	10100	1.11
HO ₂ C´ Č	hexane	47	-9.4 (c 1.07)	9800	12600	1.29
MeF						
NH2	benzene	62	+8.4 (c 1.14)	11600	13400	1.16
HO ₂ C	hexane	38	+8.1 (c 0.84)	9700	11700	1.21
Bt F						
ZHN ZHIZ	benzene	54	-6.5 (c 0.85)	8900	10200	1.45
но ₂ с́ 🤇	hexane	29	-6.7 (c 1.18)	9500	12700	1.34

Pharmaceutical Industry Co. Ltd.) in an N,N-dimethylformamide-water system at room temperature. CLIMMANC VIPCONDERMA VIPLAE, YAKULT After 1 day of stirring, the solvent was removed under dynamic vacuum under 30°C [19].

EXPERIMENTAL

Ethyl 2-fluoro-3-azidopropionate

A mixture of the tosylate of (R)-(+)-ethyl 3-hydroxy-2fluoropropionate (5.8 g, 20 mmol) ([a], +2.90 (c 1.26, MeOH); >99 %e.e.) and saturated aqueous sodium azide (55 mmol) in isopropanol (100 ml) was refluxed for 15 h, and the mixture was poured into water. Oily materials were extracted with methylene dichloride, and the organic layer was dried over magnesium sulfate. On removal of the solvent, azide was obtained in a yield of 86 %. ¹⁹F-N.M.R. (CDCl₃/external CF₃CO₂H) : δ = +114.6(d.d.d, $J_{F-H_{gem_{R}}} = 46, J_{F-H_{vic}} = 21.4, 20.0 \text{ Hz}) \text{ ppm.}$ ${}^{1}_{H-N.M.} (CDCl_{3}) : 6 = 1.27(t, CH_{3}, J_{CH_{3}}-CH_{2} = 6.7 \text{ Hz}); 4.21$ $(q, CH_{2}); 4.30(m, 1H); 4.32(m, 1H); 4.95(d.d.d, CHF).$

α -Fluoro- β -alanine ethylester

A mixture of the above azide (10 mmol) and sodium borohydride (33 mmol) in ethanol (30 ml) was refluxed for 5h, and the mixture was quenched with saturated aqueous NH,Cl solution. Oily materials were extracted with diethyl ether, and the organic layer was washed with 1N HCl, 5 % aqueous NaHCO3, water and brine. On removal of the solvent, crude products were separated by column chromatography on silica gel using hexanediethyl ether (10:1) as eluent to give the product in 81 % yield. ¹⁹F-N.M.R. (CDCl₃/external CF₃CO₂H) : δ = +113.1(d.d.d, $J_{F-H} = 45$; $J_{F-H} = 21.3$, 20.1 Hz) ppm. ${}^{1}_{H-N.M.R.}$ (CDCl₃) : δ = 1.26(t,CH₃, J_{CH_3} -CH₂ = 7.0 Hz); 4.16 (q,CH₂); 4.29(m,1H); 4.31(m,1H); 4.86(d.d.d,CHF); 8.26(br,NH₂). Analysis : Found : C, 44.73 ; H, 7.19 %. Cacld for C₅H₁₀NO₂F : C, 44.44, H, 7.46 %. $M.S.:m/e = 135.129 (M^{+} requires 135.138).$

$(R)-(+)-\alpha$ -Fluoro- β -alanine

A suspension of lipase-MY (*Candida cylindracea*, Meito Sangyo Co. Ltd., 3 g) in buffer solution (60 ml, pH 7.3) was prepared from 1/15 M aqueous Na_2HPO_4 solution (46.1 ml) and 1/15 M aqueous KH_2PO_4 solution (13.9 ml) and was stirred for 15 min at 40-41°C in 'CULSTIR' flask for suspension culture with double arms and jacket (100 ml, Sibata Scientific Technology Ltd.) Into the mixture was added α -fluoro- β -alanine ethyl ester (2.7 g, 20 mmol), and then the whole mixture was stirred at 40-41°C. After 5h of stirring, the mixture was acidified with 1N HCl and then the oily materials were extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and then the solvent removed. the products were separated by column chromatography on silica gel using hexanediethyl ether (5:1) as eluent. Mp. 260-261°C (lit. [23] mp. 260°C).

Other α -fluoro- α -substituted- β -alanines (3) were prepared in the same manner and the results are listed in Table 1.

Polymerization

(A) A suspension of cellulase (*Trichoderma viride*, Yakult Pharmaceutical Industry Co. Ltd., 5 g) in buffer solution (100 ml, pH 8.0) was prepared from 1/30 M aq. Na₂HPO₄ and KH₂PO₄ solution, was stirred for 15 min at 40-41°C. Into the mixture, the corresponding chiral fluoroamino acid (20 mmol) was added, and then the whole was stirred at 40-41°C. After 5 days of stirring at that temperature, the mixture was extracted with ethyl acetate. The product was purified by column chromatography on silica gel using hexane-ethyl acetate (5:1) as eluent.

(B) A suspension of modified enzyme [19] [cellulase-C(O)(CF₃)C=CH₂, 10 g] and the corresponding fluoroamino acid (20 mmol) in benzene (100 ml) was stirred at 40-41°C. After 5 days of stirring at 40-41°C, the mixture was worked up as usual.

REFERENCES

1 'Enzymic and non-Enzymic Catalysis ' ed. by P. Dunnill, A. Wiseman and N. Blakeborough, Ellis Horwood-Wiley, Chichester - New York (1980). 2 'Stereospecificity in Organic Chemistry and Enzymology,' ed. by J. Retey and J.A. Robinson, Verlag-Chemie, Basle (1982). 3 Y.F. Wang, C.S. Chen, G. Girdaukas and C.J. Sih, J. Am. Chem. Soc., 106 (1984) 3695. 4 Y.F. Wang, T. Izawa, S. Kobayashi and M. Ohno, J. Am. Chem. Soc., 104 (1982) 6465. 5 M. Schneider, N. Engel and H. Boensmsnn, Angew. Chem. Int. Ed. Engl., 23 (1984) 66. 6 A. Ajima, T. Yoshimoto, K. Takahashi, Y. Tamaura, Y. Saito and Y. Inada, Biotechnology Letters, 7 (1985) 303. 7 A. Zaks and A.M. Klibanov, Science, 224 (1984) 1249. 8 R.Z. Kazandjian and A.M. Klibanov, J. Am. Chem. Soc., 107 (1985) 5448. 9 A. Zaks and A.M. Klibanov, J. Am. Chem. Soc., 107 (1986) 2767. 10 T. Kitazume and N. Ishikawa, J. Am. Chem. Soc., 107 (1985) 5186. 11 T. Kitazume, T. Sato, T. Kobayashi and J.T. Lin, J. Org. Chem., 51 (1986) 1003. 12 T. Kitazume and Y. Nakayama, J. Org. Chem., 51 (1986) 2795. 13 T. Kitazume, K. Murata and T. Ikeya, J. Fluorine Chem., 31 (1986) 143. 14 T. Kitazume, T. Ikeya and K. Murata, J. Chem. Soc. Chem. Commun., (1986) 1331. 15 T. Kitazume and T. Kobayashi, Synthesis, (1987) 187. 16 B.D. Skyes and W.E. Hull, Methods Enzymol., 49 (1978) 270. 17 C.H. Hirs and S. Timasheff, 'Methods in Enzymology ' Vol. 47, Academic Press, New York, (1977). 18 T.L. Carr and L.D. Bowers, 'Immobilization Enzymes in Analytical and Clinical Chemistry'; Wiley, New York, (1980). 19 T. Kitazume, K. Murata and T. Ikeya, J. Fluorine Chem., 32 (1986) 233.

20 T. Tsushima, T. Sato and T. Tsuji, Tetrahedron Lett., (1980) 3591.

- 21 R.J. Abraham and P. Loftus, Tetrahedron, 33 (1977) 1227.
- 22 E.D. Bergmann, J. Chem.Soc., (1961) 4669.
- 23 K.L. Mukherjee and C. Heidelberger, J. Bio. Chem., 235 (1960) 433.